Course Name: Electrical and Electronics Engineering Group

Course Code: EE/EP/ET/EJ/EN/EX/IE/IS/IC/DE/MU/ICD/ED/EI

Semester: Third

Subject Title: Basic Electronics

Subject Code: 9034

Teaching and Examination Scheme:

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH</td>
<td>TU</td>
</tr>
<tr>
<td>04</td>
<td>--</td>
</tr>
</tbody>
</table>

Rationale:

Electronics plays major in our day to day life. In each and every field, electronics systems are used. Basic electronics is one of the subjects which is the base of all advance electronics. It starts with PN junction which makes the student to follow the functioning of all semiconductor based electronics. This is a core group subject and it develops cognitive and psychomotor skills.

Objectives:

Student will be able to:

1) Describe the formation of PN junction.
2) Draw the characteristics of basic components like diode, transistor etc.
3) Draw and describe the basic circuits of rectifier, filter, regulator and amplifiers.
4) Know voltage amplifiers.
5) Test diode and transistors.
6) Read the data sheets of diode and transistors.
Learning Structure:

Application:
Use of principle and working of rectifier, filters, amplifiers using semiconductor Diode and Transistors

Procedures:
- Zener Regulator
- DC Power Supply
- Small signal Transistor amplifier
- Rectifiers HWR & FWR
- Biasing of transistors
- PN junction Semiconductor diode
- BJT JFET UJT

Concept:
- Special Diodes
- Filter circuits
- Active Devices
- P-type and N-type Semiconductor Physics

Facts:
- Passive Devices
Contents: Theory

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Name of the Topic</th>
<th>Hours</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1.1 Semiconductor diode
1.1.1 Rectifying diode
Review of P-type and N-type semiconductor junction of P-type & N-type i.e. PN junction
Barrier voltage, depletion region, Junction Capacitance
1.1.2 Forward biased & reversed biased junction
Diode symbol, circuit diagram for characteristics (forward & reversed) Characteristics of PN junction diode
1.1.3 Specifications:-
Forward voltage drop, Reversed saturation current, maximum forward current, power dissipation Package view of diodes of different power ratings (to be shown during practical hours)</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1.2 Zener Diode:
construction (reference to doping level)
1.2.1 Symbol, circuit diagram for characteristics (forward & reversed)
1.2.1 Avalanche & zener breakdown
1.2.3 Specifications:-
Zener voltage, power dissipation, break over current, dynamic resistance & maximum reverse current</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Special Diodes:
Point contact diode, Schottky diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Optical Diodes:
LED, IRLED, photo diode, laser diode.
Symbol, operating principle & applications of each.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>2.1 Rectifiers & Filters
Need of rectifier, definition
2.1.1 Types of rectifier – Half wave rectifier, Full wave rectifier (Bridge & centre tapped)
2.1.2 Circuit operation: Input/output waveforms for voltage & current, Average (dc) value of current & voltage (no derivation), Ripple, ripple factor, ripple frequency, PIV of diode used, transformer utilization factor, efficiency of rectifier.
2.1.3 Comparison of three types of rectifier
2.1.4 Need of filters
Types of filters
A] shunt capacitor B] Series inductor C] LC filter D] p filter
2.1.5 Circuit operation, dc output voltage, ripple factor (formula), ripple frequency, Dependence of ripple factor on load.
Input/output waveforms, limitations & advantages</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>
Transistors

3.1] Bipolar Junction Transistor (BJT)
 - Introduction, Basic concept
 - 3.1.1 Types of transistors, structure & symbols
 - Transistor operation
 Conventional current flow, relation between different currents in transistor
 - 3.1.2 Transistor amplifying action
 Transistor configurations: CB, CE & CC
 Circuit diagram to find the characteristics
 Input/output characteristics
 - 3.1.3 Transistor parameters- input resistance, output resistance, a, β & relation between them.
 Comparison between three configurations
 - 3.1.4 Transistor specifications:
 \(V_{CE\text{ Sat}}, I_{C\text{ Max}}, V_{CEO}, I_{CEO}, a, \beta \) \(V_{CE\text{ Breakdown}} \), Power dissipation (to be explained during practical using data sheets)
 - 3.1.5 Testing of transistor using multimeter (To be shown during practical)
 - 3.1.6 Construction, working principle, characteristics of Photo transistor
 Introduction to opto-coupler

3.2] Unipolar Transistor (JFET)
 - Construction, working principle & characteristics.

3.3] Unijunction Transistor (UJT)
 - Construction, working principle & characteristics.

Biasing of BJT

4.1 Introduction, need of biasing, concept of dc load line, selection of operating point (Q point), need of stabilization of Q point, (thermal run away concept)

4.2 Types of biasing circuits
 A] Fixed biased circuit
 B] Base biased with emitter feedback
 C] Base biased with collector feedback
 D] Voltage divider
 E] Emitter biased

4.3 Circuit operation of each circuit.

4.4 Introduction to two port n/w
 Hybrid model for CE
Regulated Power Supply

5.1 What is a regulator?

5.1.1 Need of regulators, voltage regulation factor
5.1.2 Concept of load regulation & line regulation
5.1.3 Basic zener diode voltage regulator

Linear Regulators

5.2.1 Basic block diagram of dc power supply
5.2.2 Transistorised series & shunt regulator – circuit diagram & operation
5.2.3 Regulator IC’s - 78xx, 79xx, 723 as fixed, variable & dual regulator.

Small Signal Amplifiers

6.1 Concept of amplification

6.1.1 Small signal amplifier using BJT
6.1.2 Graphical analysis
6.1.3 Determination of current, voltage & power gain, input & output resistance, phase shift between input & output.
6.1.4 AC Load Line
6.1.5 Function of input & output coupling capacitors & criteria for the value selection.
6.1.6 Function of emitter bypass capacitor & its value selection.
6.2 AC equivalent circuit of transistor CE amplifier.
6.3 Single stage CE amplifier with voltage divider bias. Its explanation.
6.5 Introduction to CB & CC amplifier & List of applications.
6.6 Cascade Amplifiers (Multistage Amplifier)
6.6.1 Need of Multistage Amplifiers, Gain of amplifier.
6.6.2 Types of amplifier coupling – RC, transformer & Direct coupling.
6.6.3 Two stage amplifier circuit diagram, working, frequency Response, merits & demerits & applications of each.

<table>
<thead>
<tr>
<th>05</th>
<th>Regulated Power Supply</th>
<th>08</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.1 What is a regulator?
5.1.1 Need of regulators, voltage regulation factor
5.1.2 Concept of load regulation & line regulation
5.1.3 Basic zener diode voltage regulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2 Linear Regulators
5.2.1 Basic block diagram of dc power supply
5.2.2 Transistorised series & shunt regulator – circuit diagram & operation
5.2.3 Regulator IC’s - 78xx, 79xx, 723 as fixed, variable & dual regulator.</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Small Signal Amplifiers</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>6.1 Concept of amplification
6.1.1 Small signal amplifier using BJT
6.1.2 Graphical analysis
6.1.3 Determination of current, voltage & power gain, input & output resistance, phase shift between input & output.
6.1.4 AC Load Line
6.1.5 Function of input & output coupling capacitors & criteria for the value selection.
6.1.6 Function of emitter bypass capacitor & its value selection.
6.2 AC equivalent circuit of transistor CE amplifier.
6.3 Single stage CE amplifier with voltage divider bias. Its explanation.
6.4 Frequency response of single stage CE Amplifier, Bel, Decibel unit. Bandwidth & its significance. Effect of coupling & emitter bypass capacitor on bandwidth.
6.5 Introduction to CB & CC amplifier & List of applications.
6.6 Cascade Amplifiers (Multistage Amplifier)
6.6.1 Need of Multistage Amplifiers, Gain of amplifier.
6.6.2 Types of amplifier coupling – RC, transformer & Direct coupling.
6.6.3 Two stage amplifier circuit diagram, working, frequency Response, merits & demerits & applications of each.</td>
<td>16</td>
</tr>
</tbody>
</table>

Total: 64

Practical:

Skills to be developed:

Intellectual Skills:

1. Identification and selection of components
2. Interpretation of circuits
3. Understand working of Regulated dc power supply
Motor skills:

1. Ability to draw the circuits
2. Ability to measure various parameters
3. Ability to test the components using multimeter
4. Follow standard test procedures

List of Practical:

1] To plot Forward & Reverse biased characteristics of diode.
2] To plot Forward & Reverse biased characteristics of Zener diode.
4] To Study the filter circuits. a] Capacitor Filter b] Inductor filter & draw wave forms
5] To Plot Input & output characteristics of transistor in CE mode.
6] To Plot Input & output characteristics of transistor in CB mode.
7] To Plot Characteristics of FET.
9] To Plot Characteristics of UJT.
10] To study the Zener Diode as Regulator & calculate load regulation.
11] To study Transistor series and shunt regulator.
12] To study Single stage common emitter amplifier & plot its frequency response.
13] To study Two stage RC coupled amplifier & plot its Frequency response.

Learning Resources:

Books:

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Author</th>
<th>Title</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Albert Malvino</td>
<td>Electronic Principles</td>
<td>Tata McGraw Hill</td>
</tr>
<tr>
<td></td>
<td>David J.Bates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Allen. Mottershead</td>
<td>Electronic Devices & Components’</td>
<td>Prentice Hall of India</td>
</tr>
<tr>
<td>04</td>
<td>NIIT</td>
<td>Basic Electronics & Devices</td>
<td>Prentice Hall of India</td>
</tr>
<tr>
<td>05</td>
<td>Grob Bernard</td>
<td>Basic Electronics</td>
<td>Tata McGraw Hill</td>
</tr>
<tr>
<td>06</td>
<td>David J. Bell</td>
<td>Electronics Devices & Circuits</td>
<td>Prentice Hall of India</td>
</tr>
</tbody>
</table>